A Study of Joinpoint Models for Longitudinal Data

نویسندگان

  • Libo Zhou
  • Hongtao Yang
چکیده

A STUDY OF JOINPOINT MODELS FOR LONGITUDINAL DATA by Libo Zhou Dr. Kaushik Ghosh, Examination Committee Chair Associate Professor, Biostatistics University of Nevada, Las Vegas, USA In many medical studies, data are collected simultaneously on multiple biomarkers from each individual. Levels of these biomarkers are measured periodically over certain time duration, giving rise to longitudinal trajectories. The subjects under study may also be subject to dropout due to several competing causes, the likelihood of which may be affected by the levels of these biomarkers. In this dissertation, we investigate flexible Bayesian modeling of such data, taking into account any available covariate information as well as possible censoring of the drop-out times. We propose joint models for multiple biomarkers with multiple causes of dropout. Our proposed models allow the trajectories to have multiple joinpoints, the locations of which are estimated from the data. We explore two ways of modeling longitudinal data incorporating the dropout information. Dirichlet process priors are used to make the models robust to misspecification. The Dirichlet process also leads to a natural clustering of subjects with similar trajectories, which can be of importance in efficiently estimating the joinpoints. Efficient Markov chain Monte Carlo algorithms are developed for fitting the proposed models. The performance of all the methods is investigated through simulation

منابع مشابه

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Transition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses

In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...

متن کامل

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

مقایسه مدل‌های داده های طولی در انبساط آبی سه کامپوزیت متداول

 Background: Longitudinal studies are widely used in medical and social sciences. According to repeated measurements in these studies, independence assumption is not observed and therefore suitable models should be selected. In this study, application of marginal and transition models for analyzing the longitudinal data related to hygroscopic expansion of composite is shown.  Methods: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017